Search results

1 – 10 of 207
Article
Publication date: 10 October 2022

Somaiyeh Khaleghi and Ahmad Jadmavinejad

Shadegan County as a wetland area was selected because of its susceptibility to flooding hazards and inundation. The purpose of this paper is to analyze flooding hazard based on…

Abstract

Purpose

Shadegan County as a wetland area was selected because of its susceptibility to flooding hazards and inundation. The purpose of this paper is to analyze flooding hazard based on the analytical hierarchy process methodology.

Design/methodology/approach

The eight influencing factors (slope, distance from wetland, distance from river, drainage density, elevation, curve number, population density and vegetation density) were considered for flood mapping within the Shadegan County using analytical hierarchical process, geographical information system and remote sensing. The validation of the map was conducted based on the comparison of the historical flood inundation of April 21, 2019.

Findings

The results showed that around 32.65% of the area was under high to very high hazard zones, whereas 44.60% accounted for moderate and 22.75% for very low to the low probability of flooding. The distance from Shadegan Wetland has been gained high value and most of the hazardous areas located around this wetland. Finally, the observed flood density in the different susceptibility zones for the very high, high, moderate, low and very low susceptible zones were 0.35, 0.22, 0.15, 0.19, and 0.14, respectively.

Originality/value

To the best of the authors’ knowledge, the flood susceptibility map developed here is one of the first studies in a built wetland area which is affected by anthropogenic factors. The flood zonation map along with management and restoration of wetland can be best approaches to reduce the impacts of floods.

Details

International Journal of Disaster Resilience in the Built Environment, vol. 15 no. 2
Type: Research Article
ISSN: 1759-5908

Keywords

Abstract

Details

Organizational Behavior Management
Type: Book
ISBN: 978-1-78769-678-5

Article
Publication date: 20 June 2017

Ebrahim Vahabli and Sadegh Rahmati

To improve the quality of the additive manufacturing (AM) products, it is necessary to estimate surface roughness distribution in advance. Although surface roughness estimation…

Abstract

Purpose

To improve the quality of the additive manufacturing (AM) products, it is necessary to estimate surface roughness distribution in advance. Although surface roughness estimation has been previously studied, factors leading to the creation of a rough surface and a comprehensive test for model validation have not been adequately investigated. Therefore, this paper aims to establish a robust model using empirical data based on optimized artificial neural networks (ANNs) to estimate the surface roughness distribution in fused deposition modelling parts. Accordingly, process parameters such as time, cost and quality should be optimized in the process planning stage.

Design/methodology/approach

Process parameters were selected via a literature review of surface roughness estimation modelling by analytical and empirical methods, and then a specific test part was fabricated to provide a complete evaluation of the proposed model. The ANN structure was optimized by trial and error method and evolutionary algorithms. A novel methodology based on the combination of the intelligent algorithms including the ANN, linked to the particle swarm optimization (PSO) and imperialist competitive algorithm (ICA), was developed. The PSOICA algorithm was implemented to increase the capability of the ANN to perform much faster and converge more precisely to favorable results. The performances of the ANN models were compared to the most well-known analytical models at build angle intervals of equal size. The most effective process variable was found by sensitivity analysis. The validity of proposed model was studied comprehensively where different truncheon parts and medical case studies including molar tooth, skull, femur and a custom-made hip stem were built.

Findings

This paper presents several improvements in surface roughness distribution modelling including a more suitable method for process parameter selection according to the design criteria and improvements in the overall surface roughness of parts as compared to analytical methods. The optimized ANN based on the proposed advanced algorithm (PSOICA) represents precise estimation and faster convergence. The validity assessment confirms that the proposed methodology performs better in varied conditions and complex shapes.

Originality/value

This research fills an important gap in surface roughness distribution estimation modelling by using a test part designed for that purpose and optimized ANN models which uses purely empirical data. The novel PSOICA combination enhances the ability of the ANN to perform more accurately and quickly. The advantage in using actual surface roughness values is that all factors resulting in the creation of a rough surface are included, which is impossible if other methods are used.

Article
Publication date: 19 September 2023

Mohammad Hossein Rahmati and Mohammad Reza Jalilvand

Current models of organizational excellence are appropriate for the private organizations. It is evident that if an appropriate model is not adopted, the process of excellence in…

Abstract

Purpose

Current models of organizational excellence are appropriate for the private organizations. It is evident that if an appropriate model is not adopted, the process of excellence in the organizations fails and some dimensions of the organization get affected by unpredictable damages. This research aims to identify an appropriate excellence model for public organizations.

Design/methodology/approach

First, a comprehensive literature review was conducted to identify the excellence criteria and models. Second, the models were through an expert-oriented questionnaire, analyzed by the analytical hierarchy process (AHP) technique. Participants were experts in the two domains of excellence models and public sector management. A sample of 15 experts was selected using purposive sampling. In order to emphasize on reliability, 10 questionnaires were adopted for analysis.

Findings

The findings showed that the European Foundation for Quality Management (EFQM) model is the most appropriate model for excellence measurement in the public organizations based on the five selected indices.

Originality/value

The identification of a model for measuring organizational excellence for public sector can significantly contribute to existing literature on excellence measurement.

Details

International Journal of Quality & Reliability Management, vol. 41 no. 3
Type: Research Article
ISSN: 0265-671X

Keywords

Article
Publication date: 7 June 2019

Reza Dadsetani, Ghanbar Ali Sheikhzadeh, Mohammad Reza Hajmohammadi and Mohammad Reza Safaei

Electronic components’ efficiency is the cornerstone of technology progress. The cooling process used for electronic components plays a main role in their performance. Embedded…

Abstract

Purpose

Electronic components’ efficiency is the cornerstone of technology progress. The cooling process used for electronic components plays a main role in their performance. Embedded high-conductivity material and provided microchannel heat sink are two common cooling methods. The former is expensive to implement while the latter needs micro-pump, which consumes energy to circulate the flow. The aim of this study is providing a new configuration and method for improving the performance of electronic components.

Design/methodology/approach

To manage these challenges and improve the cooling efficiency, a novel method named Hybrid is presented here. Each method's performance has been investigated, and the results are widely compared with others. Considering the micro-pump power, the supply of the microchannel flow and the thermal conductivity ratio (thermal conductivity ratio is defined as the ratio of thermal conductivity of high thermal conductivity material to the thermal conductivity of base solid), the maximum disk temperature of each method was evaluated and compared to others.

Findings

The results indicated that the Hybrid method can reduce the maximum disk temperature up to 90 per cent compared to the embedded high thermal conductivity at the same thermal conductivity ratio. Moreover, the Hybrid method further reduces the maximum disk temperature up to 75 per cent compared to the microchannel, at equivalent power consumption.

Originality/value

The information in this research is presented in such a way that designers can choose the desired composition, the limited amount of consumed energy and the high temperature of the component. According to the study of radial-hybrid configuration, the different ratio of microchannel and materials with a high thermal conductivity coefficient in the constant cooling volume was investigated. The goal of the investigation was to decrease the maximum temperature of a plate on constant energy consumption. This aim has been obtained in the radial-hybrid configuration.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Book part
Publication date: 10 June 2019

Carol Belle-Hallsworth and Pamela Ann Gordon

This study sought to gain an understanding of employee perspectives during technology implementations in a Caribbean bureaucratic organization. Twenty-three case study…

Abstract

This study sought to gain an understanding of employee perspectives during technology implementations in a Caribbean bureaucratic organization. Twenty-three case study participants expressed their perceptions of their environment. There were 18 participants involved in answering the semi-structured open-ended interview questions, and five participants contributed responses, and emotional states, which control how employees view their work identity. Insights into how employees react during technology implementation might improve future success outcomes when used to determine management actions undertaken during these projects. This could have a positive effect on the adoption rate of newly implemented technology. The data supported the assertion that employees’ emotions are rooted in their environment as well as how they perceived themselves at work. This study evaluated the effect of the technology change on the employees both emotionally and how the change impacted their jobs; framing the findings by combining theories that currently stand alone. The study results described the connectedness between models that explain how and why employees accept technology changes within their environment.

Details

Advances in the Technology of Managing People: Contemporary Issues in Business
Type: Book
ISBN: 978-1-78973-074-6

Keywords

Article
Publication date: 7 June 2019

Kamel Hooman, Mohammad Reza Safaei, Hussein Togun and Mahidzal Dahari

In this study, closed-form solutions are presented to investigate thermohydraulics of liquid films in a rotating heat pipe. The film thickness is expressed as a function of flow…

Abstract

Purpose

In this study, closed-form solutions are presented to investigate thermohydraulics of liquid films in a rotating heat pipe. The film thickness is expressed as a function of flow rate.

Design/methodology/approach

Further, sensitivity of both film thickness and flow rate to the length of the rotating heat pipe can now be investigated using the explicit expressions presented here.

Findings

To make it easier for practical application, an approximate solution is presented on top of the exact solution.

Originality/value

Both approximate and exact solutions are then applied to note that results are in good agreement when compared to those available in the literature.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 4 June 2021

Luis Lisandro Lopez Taborda, Heriberto Maury and Jovanny Pacheco

There are many investigations in design methodologies, but there are also divergences and convergences as there are so many points of view. This study aims to evaluate to…

1152

Abstract

Purpose

There are many investigations in design methodologies, but there are also divergences and convergences as there are so many points of view. This study aims to evaluate to corroborate and deepen other researchers’ findings, dissipate divergences and provide directing to future work on the subject from a methodological and convergent perspective.

Design/methodology/approach

This study analyzes the previous reviews (about 15 reviews) and based on the consensus and the classifications provided by these authors, a significant sample of research is analyzed in the design for additive manufacturing (DFAM) theme (approximately 80 articles until June of 2017 and approximately 280–300 articles until February of 2019) through descriptive statistics, to corroborate and deepen the findings of other researchers.

Findings

Throughout this work, this paper found statistics indicating that the main areas studied are: multiple objective optimizations, execution of the design, general DFAM and DFAM for functional performance. Among the main conclusions: there is a lack of innovation in the products developed with the methodologies, there is a lack of exhaustivity in the methodologies, there are few efforts to include environmental aspects in the methodologies, many of the methods include economic and cost evaluation, but are not very explicit and broad (sustainability evaluation), it is necessary to consider a greater variety of functions, among other conclusions

Originality/value

The novelty in this study is the methodology. It is very objective, comprehensive and quantitative. The starting point is not the case studies nor the qualitative criteria, but the figures and quantities of methodologies. The main contribution of this review article is to guide future work on the subject from a methodological and convergent perspective and this article provides a broad database with articles containing information on many issues to make decisions: design methodology; optimization; processes, selection of parts and materials; cost and product management; mechanical, electrical and thermal properties; health and environmental impact, etc.

Details

Rapid Prototyping Journal, vol. 27 no. 5
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 18 February 2020

Chandra Nanthakumar

The purpose of this paper is to investigate the effectiveness of classical yoga not only as a complementary therapy but also as a viable option in the management of anxiety and…

1403

Abstract

Purpose

The purpose of this paper is to investigate the effectiveness of classical yoga not only as a complementary therapy but also as a viable option in the management of anxiety and depression.

Design/methodology/approach

Papers were retrieved using a combination of databases including PubMed/MEDLINE and PsycINFO.

Findings

The findings revealed that the practice of yoga as complementary therapy and also as a stand-alone therapy is effective in managing and reducing anxiety and depression.

Research limitations/implications

All the studies reviewed in this paper were methodologically limited in terms of sample size, sample heterogeneity, yoga intervention styles, duration of practice and teaching methods. Further research is needed to address key areas such as how much yoga is needed per week, duration of each class and specifically the types of asanas and pranayama to practise to bring about change in the anxiety and depressive states.

Practical implications

This review has provided substantial insight to yoga as a complementary and/or stand-alone therapy for anxiety and depression which is much needed in this contemporary society. The Malaysian community especially teenagers and adults, should consider incorporating yoga as part of their daily routine to experience and reap its benefits. It is suggested that yoga be included as part of the physical education curriculum in learning institutions and as a recreational activity for staff in public and private organisations.

Originality/value

The findings of this review provide an avenue for victims to cope with and manage anxiety and depression through the practice of yoga.

Details

The Journal of Mental Health Training, Education and Practice, vol. 15 no. 3
Type: Research Article
ISSN: 1755-6228

Keywords

Article
Publication date: 23 June 2021

Radhwan Bin Hussin, Safian Bin Sharif, Shayfull Zamree Bin Abd Rahim, Mohd Azlan Bin Suhaimi, Mohd Tanwyn Bin Mohd Khushairi, Abdellah Abdellah EL-Hadj and Norshah Afizi Bin Shuaib

Rapid tooling (RT) integrated with additive manufacturing technologies have been implemented in various sectors of the RT industry in recent years with various kinds of prototype…

Abstract

Purpose

Rapid tooling (RT) integrated with additive manufacturing technologies have been implemented in various sectors of the RT industry in recent years with various kinds of prototype applications, especially in the development of new products. The purpose of this study is to analyze the current application trends of RT techniques in producing hybrid mold inserts.

Design/methodology/approach

The direct and indirect RT techniques discussed in this paper are aimed at developing a hybrid mold insert using metal epoxy composite (MEC) in increasing the speed of tooling development and performance. An extensive review of the suitable development approach of hybrid mold inserts, material preparation and filler effect on physical and mechanical properties has been conducted.

Findings

Latest research studies indicate that it is possible to develop a hybrid material through the combination of different shapes/sizes of filler particles and it is expected to improve the compressive strength, thermal conductivity and consequently increasing the hybrid mold performance (cooling time and a number of molding cycles).

Research limitations/implications

The number of research studies on RT for hybrid mold inserts is still lacking as compared to research studies on conventional manufacturing technology. One of the significant limitations is on the ways to improve physical and mechanical properties due to the limited type, size and shape of materials that are currently available.

Originality/value

This review presents the related information and highlights the current gaps related to this field of study. In addition, it appraises the new formulation of MEC materials for the hybrid mold inserts in injection molding application and RT for non-metal products.

Details

Rapid Prototyping Journal, vol. 27 no. 6
Type: Research Article
ISSN: 1355-2546

Keywords

1 – 10 of 207